假设redis现在用的主从模式,1个master节点,3个slave节点。master节点负责写数据,slave节点负责读数据。
这样需要找一个slave升级为新的master节点,假如slave1被选举出来了。
如果有个锁A比较悲催,刚加锁成功master就挂了,还没来得及同步到slave1。
这样会导致新master节点中的锁A丢失了。后面,如果有新的线程,使用锁A加锁,依然可以成功,分布式锁失效了。
那么,如果解决这个问题呢?
答:redisson框架为了解决这个问题,提供了一个专门的类:RedissonRedLock,使用了Redlock算法。
RedissonRedLock解决问题的思路如下:
1.需要搭建几套相互独立的redis环境,假如我们在这里搭建了3套。
2.每套环境都有一个redisson node节点。
3.多个redisson node节点组成了RedissonRedLock。
4.环境包含:单机、主从、哨兵和集群模式,可以是一种或者多种混合。
在这里我们以主从为例,架构图如下:
RedissonRedLock加锁过程如下:
1.循环向所有的redisson node节点加锁,假设节点数为N,例子中N等于5。
2.如果在N个节点当中,有N/2 + 1个节点加锁成功了,那么整个RedissonRedLock加锁是成功的。
3.如果在N个节点当中,小于N/2 + 1个节点加锁成功,那么整个RedissonRedLock加锁是失败的。
4.如果中途发现各个节点加锁的总耗时,大于等于设置的最大等待时间,则直接返回失败。
从上面可以看出,使用Redlock算法,确实能解决多实例场景中,假如master节点挂了,导致分布式锁失效的问题。
但也引出了一些新问题,比如:
需要额外搭建多套环境,申请更多的资源,需要评估一下,经费是否充足。
如果有N个redisson node节点,需要加锁N次,最少也需要加锁N/2+1次,才知道redlock加锁是否成功。显然,增加了额外的时间成本,有点得不偿失。
由此可见,在实际业务场景,尤其是高并发业务中,RedissonRedLock其实使用的并不多。
在分布式环境中,CAP是绕不过去的。
CAP指的是在一个分布式系统中:一致性(Consistency)
可用性(Availability)
分区容错性(Partition tolerance)
这三个要素最多只能同时实现两点,不可能三者兼顾。
如果你的实际业务场景,更需要的是保证数据一致性。那么请使用CP类型的分布式锁,比如:zookeeper,它是基于磁盘的,性能可能没那么好,但数据一般不会丢。
如果你的实际业务场景,更需要的是保证数据高可用性。那么请使用AP类型的分布式锁,比如:redis,它是基于内存的,性能比较好,但有丢失数据的风险。
其实,在我们绝大多数分布式业务场景中,使用redis分布式锁就够了,真的别太较真。因为数据不一致问题,可以通过最终一致性方案解决。但如果系统不可用了,对用户来说是暴击。